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1 Final Report

1.1 Rasterisation and Rendering pipeline

We used OpenGL for rasterisation to reduce CPU load and utilise GPU more effectively. Drawing triangles
to the screen was done using the standard process described in [1]. We integrated the transformation matrix
and our shade function into the OpenGL pipeline to form our vertex and fragment shader, respectively. This
was written in GLSL and utilised uniforms passed by our program for effective rendering. We also created a
Phong-based shader that accounts for ambient, diffuse, and specular contributions to give a more realistic
output. We also created a high-level object-oriented wrapper over certain OpenGL functionality, like shaders,
to easily set and verify uniforms.

1.2 Shallow-Water Simulation

The main focus of our project is the physics-based simulation of a shallow, large body of water: the pool. In
order to maintain a level of interactability, we use a two-dimensional height field for simulation.

For this, we employ the shallow water equations as given in [2],

Dh

Dt
= −h(∇ · v) Dv

Dt
= −g∇η + aext

where h is the depth of the water, H is the y-coordinate of the terrain on the bottom, η = H + h is the
y-coordinate of the water’s surface, v is the vector (u, w) representing the horizontal velocity of the fluid, g is
gravity, aext is the external acceleration, and D is the material derivative operator as given in the course
slides [3].

For better accuracy, we implement a staggered grid for our discretised simulation as specified briefly in the
course slides [3] and [2]. We store the heights of a cell, hi,j and Hi,j at its centre. And we store the velocity
components ui+ 1
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on the faces. When computing values not stored, we bilinearly interpolate.

The grid is first updated with values generated by computing the advection of height and velocity. We use
the semi-lagrangian method as proposed in [3] in order to solve the advection of hi,j , ui+ 1
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the height as hn+1
i,j = xh − ∆t · (i∆x, j∆x).

The heights are integrated by adding the following,
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as suggested by [2], and [3]. Here we implement a heuristic provided by [2], where instead of linearly
interpolating to find the values of h_,_, we instead evaluate it to be equal to h in the upwind direction.

The velocities are updated, as [2] suggests, taking the gradient of the water height. For our staggered



velocities, we add the following,
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where aext is the external acceleration.

For boundary conditions, our pool has a well-defined boundary that reflects the waves. We carry out the
method suggested in [3] and at the boundary set the heights to the same as their neighbours, and set the
velocity component into the wall to be zero.

1.3 Rasterising Water Surface

We rasterise the water surface with the method described in [2]. The height field of our fluid is already a gird
of quads, with each (i, j) vertex having height ηi,j that we may split into triangles. We copy over the vertex
data to the GPU and split the quads to emit triangles in a geometry shader. Normals for the water surface
are computed on the CPU.

Additionally, as suggested by [2], we slice the quad into triangles across the following diagonal,(i, j) − (i + 1, j + 1) if ηi,j + ηi+1,j+1 > ηi+1,j + ηi,j+1

(i + 1, j) − (i, j + 1) else

since picking the diagonal that aligns with the wave’s crests reduces artefacts.

For transparency, we rely on OpenGL’s blending. After enabling OpenGL’s blending, we draw the opaque
pool first and then draw the transparent water surface as suggested in [4].

1.4 Rigid-body Physics

For rigid-body physics, we employ Verlet integration as suggested by [5]. A force acts on the centre of mass
of the rigid body whose next coordinate is computed via xn+1 ≈ xn + (xn − xn−1) + ∆t2Fn/m where xn is
the vector that represents the coordinates of the body, m is its mass, ∆t is the time step, and Fn is the force
acting on it. Additionally, we also apply gravity to the body.

For torque and rotation, we calculate the updated angular momentum as Ln+1 ≈ Ln + ∆tτ where Ln is the
angular momentum at time point n, ∆t is the time step, and τ is the torque acting on it.

Calculating Moment of Inertia Next we need to find the Moment of Inertia for our rigid body to
compute angular velocity and the new rotation. We achieve this by iterating through the triangular faces in
our mesh. Note that we only need to calculate the initial inertia tensor as we can obtain the global inertia
tensor at any point of time via I = RI0RT where I0 is the initial rotation tensor and R is the current rotation
of the object as a rotation matrix. As suggested by [6], we need to compute 10 integrals in order to compute
the volume, centre of mass, and initial inertia tensor. As mentioned in the paper, we can simplify these 10
integrals over the volume using the divergence theorem that states:∫

V

∇ · F dV =
∫

∂V

F · n̂ dA



Using this, we appropriate F to convert the volume integrals into corresponding area integrals. Since they
are area integrals, we can sum them over each individual face.

We solve these integrals using Barycentric parametrisation as suggested by [7] to get a closed-form result.
Using these values, we can fill in the entries in the inertia tensor matrix.

Now, with the angular momentum and the current inertia tensor, we can calculate the angular velocity as
ω = I−1L. We use a forward Euler scheme to update the rotation quaternion along the angular velocity’s
axis with the magnitude of ∥ω∥∆t.

For detecting collisions with objects other than the water’s surface, we use a simple axis-aligned bounding
box around the objects. We resolve collisions by finding the axis of minimum overlap, and correct based on
that as suggested in [8]. We also calculate the force that would have acted on the objects and apply torque
based on that. We also use this approach to ensure that objects stay inside the pool.

1.5 Rigid-body and Water Interaction

When a rigid body lands in the pool, we wish to modify the height and velocity of the fluid. To accomplish
this, we utilise Algorithm 2 as given in [2]. We essentially subdivide the rigid body’s triangles into smaller
triangles until their area falls below ∆x2 where ∆x is our grid spacing recursively. This subdivision allows
fine-grained spatial resolution for capturing interactions accurately between the body and the fluid. For each
of these small triangles, the centroid’s position p = (px, py, pz) and its velocity v = (vx, vy, vz) is computed
via barycentric interpolation. We use the triangle’s normal n to determine the direction and magnitude of
fluid displacement.

The velocity’s magnitude relative to the vertical direction is then used to determine how many substeps to
divide the current simulation timestep into,

num_substeps = max {1, ⌊|v − vyy|(∆t/∆x) + 0.5⌋}

This is because more substeps allow smoother and more stable application of forces along the triangle’s
trajectory. For each substep, then, we advance the centroid position along its velocity, identify the fluid grid
cell closest to this position, (i, j) and calculate the depth of the centroid relative to the fluid surface height.
Upon finding the centroid submerged, we compute a decay factor that exponentially reduces influence with
depth, reflecting that deeper submerged parts affect the fluid less. The fluid surface’s height at the grid cell is
then updated by adding a volume displacement proportional to the triangle’s area, velocity, and decay factor,

hi,j += e−(ηi,j−py) (n · vrel)A∆t

num_substeps(∆x)2

where vrel = v − vfluid and depth = ηi,j − py, Vdisp = n · vrel. The fluid surface’s velocity is then updated at
the corresponding staggered grid faces by pushing them towards the triangle centroid’s velocity, scaled by a
coefficient,

coeff = min
{

1,
e−(ηi,j−py)

5
(ηi,j − py)

ηi,j
sign

∆t

(∆x)2 A

}
where sign is the sign of ηy.



The fluid must also interact with the rigid body. For this we consider buoyancy, drag and lift forces. We
compute the sum of these forces Fi = fbuoyancy, fdrag, flist for each centroid of our subdivided triangle grid
from before. We compute these forces by the very straightforward equations 14, 15, 16 and 17 as given in [2]
which we do not copy here for brevity. The equations let us adjust coefficients CD, CL and ω for the drag,
lift, and effective area respectively. Based on our research and experiments, we decided the values CD = 0.82,
CL = 0.007, and ω = 0.9. These are based on values for typical cylindrical objects.

The total force acting on the body at its centre of mass is given by F =
∑

Fi. And each Fi produces a torque
about the body’s centre of mass, so the total torque generated is τ =

∑
ri × Fi, where ri the displacement

from p to the centre of mass, which is used to update the angular velocity of the body.
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